Complex Number Arithmetic

Discussion in 'Complex Numbers' started by Tony R. Kuphaldt, Jun 24, 2010.

  1. Tony R. Kuphaldt

    Tony R. Kuphaldt

    Joined:
    Jun 21, 2010
    Messages:
    394
    Likes Received:
    3
    Since complex numbers are legitimate mathematical entities, just like scalar numbers, they can be added, subtracted, multiplied, divided, squared, inverted, and such, just like any other kind of number. Some scientific calculators are programmed to directly perform these operations on two or more complex numbers, but these operations can also be done "by hand." This section will show you how the basic operations are performed. It is highly recommended that you equip yourself with a scientific calculator capable of performing arithmetic functions easily on complex numbers. It will make your study of AC circuit much more pleasant than if you're forced to do all calculations the longer way.

    Addition and subtraction with complex numbers in rectangular form is easy. For addition, simply add up the real components of the complex numbers to determine the real component of the sum, and add up the imaginary components of the complex numbers to determine the imaginary component of the sum:

    [​IMG]

    When subtracting complex numbers in rectangular form, simply subtract the real component of the second complex number from the real component of the first to arrive at the real component of the difference, and subtract the imaginary component of the second complex number from the imaginary component of the first to arrive the imaginary component of the difference:

    [​IMG]

    For longhand multiplication and division, polar is the favored notation to work with. When multiplying complex numbers in polar form, simply multiply the polar magnitudes of the complex numbers to determine the polar magnitude of the product, and add the angles of the complex numbers to determine the angle of the product:

    [​IMG]

    Division of polar-form complex numbers is also easy: simply divide the polar magnitude of the first complex number by the polar magnitude of the second complex number to arrive at the polar magnitude of the quotient, and subtract the angle of the second complex number from the angle of the first complex number to arrive at the angle of the quotient:

    [​IMG]

    To obtain the reciprocal, or "invert" (1/x), a complex number, simply divide the number (in polar form) into a scalar value of 1, which is nothing more than a complex number with no imaginary component (angle = 0):

    [​IMG]

    These are the basic operations you will need to know in order to manipulate complex numbers in the analysis of AC circuits. Operations with complex numbers are by no means limited just to addition, subtraction, multiplication, division, and inversion, however. Virtually any arithmetic operation that can be done with scalar numbers can be done with complex numbers, including powers, roots, solving simultaneous equations with complex coefficients, and even trigonometric functions (although this involves a whole new perspective in trigonometry called hyperbolic functions which is well beyond the scope of this discussion). Be sure that you're familiar with the basic arithmetic operations of addition, subtraction, multiplication, division, and inversion, and you'll have little trouble with AC circuit analysis.

    • REVIEW:
    • To add complex numbers in rectangular form, add the real components and add the imaginary components. Subtraction is similar.
    • To multiply complex numbers in polar form, multiply the magnitudes and add the angles. To divide, divide the magnitudes and subtract one angle from the other.

     
    Tony R. Kuphaldt, Jun 24, 2010
    #1
    1. Advertisements

Want to reply to this thread or ask your own question?

You'll need to choose a username for the site, which only take a couple of moments (here). After that, you can post your question and our members will help you out.
Similar Threads
  1. jhon1

    binary arithmetic

    jhon1, Jan 30, 2007, in forum: Electronic Design
    Replies:
    43
    Views:
    1,442
    Don Lancaster
    Feb 5, 2007
  2. bulegoge@columbus.rr.com

    Complex Number Tutorial

    bulegoge@columbus.rr.com, Jan 21, 2008, in forum: Electronic Design
    Replies:
    13
    Views:
    722
    blackhead
    Jan 26, 2008
  3. Alexander Avtanski

    Multibyte arithmetic on a PIC microcontroller

    Alexander Avtanski, Oct 8, 2008, in forum: Electronic Design
    Replies:
    7
    Views:
    1,651
    Ben Jackson
    Oct 8, 2008
  4. steve_locher25

    Quadrature Arithmetic

    steve_locher25, Mar 17, 2010, in forum: General Electronics Chat
    Replies:
    6
    Views:
    1,001
    Resqueline
    Mar 18, 2010
  5. Tony R. Kuphaldt

    Arithmetic with Scientific Notation

    Tony R. Kuphaldt, Jun 22, 2010, in forum: Scientific Notation and Metric Prefixes
    Replies:
    0
    Views:
    2,646
    Tony R. Kuphaldt
    Jun 22, 2010
  6. Tony R. Kuphaldt

    Boolean Arithmetic

    Tony R. Kuphaldt, Jun 29, 2010, in forum: Boolean Algebra
    Replies:
    0
    Views:
    2,608
    Tony R. Kuphaldt
    Jun 29, 2010
  7. Sammyoko

    2's complement arithmetic

    Sammyoko, Jul 24, 2012, in forum: General Electronics Chat
    Replies:
    5
    Views:
    987
    Raven Luni
    Jul 30, 2012
  8. bhuvanesh

    complex number

    bhuvanesh, Mar 7, 2015, in forum: Electronics Homework Help
    Replies:
    6
    Views:
    455
    Merlin3189
    Mar 9, 2015
Loading...